Effects of Luminescence Efficiency in InGaN-GaN LEDs by Inserting a LT-GaN Underlying Layer to Separate Nonradiative Recombination Centers

نویسندگان

  • Ray-Ming Lin
  • Chung-Hao Chiang
  • Yi-Lun Chou
  • Meng-Chyi Wu
چکیده

We have investigated the effects of nonradiative recombination centers (NRCs) on the device performances of InGaN/GaN multi-quantum-well (MQW) light-emitting diodes (LEDs) incorporating low-temperature n-GaN (LT-GaN) underlying layers. Inserting an LT-GaN underlying layer prior to growing the MQWs is a successful means of separating the induced NRCs as a result of the presence of a growth interrupt interface between the n-GaN template and the InGaN QW. We found that inserting an LT-GaN underlying layer prior to growing the MQWs could improve the external quantum efficiency of as-grown conventional LEDs. In our best case, the external quantum efficiency of a blue LED incorporating a 70-nm-thick LT-GaN was 16% higher (at 20 mA) than that of the corresponding as-grown blue LED. Finally, it would also use in optical-fiber short-wavelength communication systems at particular condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Carrier Injection, Transport, Relaxation, and Recombination Associated with a Stronger Carrier Localization and a Low Polarization Effect of Nonpolar m-plane InGaN/GaN Light-Emitting Diodes

Based on time-resolved electroluminescence (TREL) measurement, more efficient carrier injection, transport, relaxation, and recombination associated with a stronger carrier localization and a low polarization effect in a nonpolar m-plane InGaN/GaN light emitting diode (m-LED), compared with those in a polar c-LED, are reported. With a higher applied voltage in the c-LED, decreasing response tim...

متن کامل

Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes.

The enhancement of light extraction efficiency for thin-film flip-chip (TFFC) InGaN quantum wells (QWs) light-emitting diodes (LEDs) with GaN micro-domes on n-GaN layer was studied. The light extraction efficiency of TFFC InGaN QWs LEDs with GaN micro-domes were calculated and compared to that of the conventional TFFC InGaN QWs LEDs with flat surface. The three dimensional finite difference tim...

متن کامل

Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes.

We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulati...

متن کامل

Investigation of Efficiency Droop for InGaN-based LEDs with Carrier Localization State and Polarization Effect

We prepared wavelength-dependent InGaN-based light emitting diodes (LEDs) with peak emissions ranging from 400 to 445 nm, and investigated their efficiency droop characteristics at injection currents of up to 1 A. We found that the emissions of the wavelength-dependent InGaN LEDs underwent blue shifts at elevated currents. In addition, although the external quantum efficiencies (EQEs) changed d...

متن کامل

Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer

The temperature dependence of the electroluminescence EL spectral intensity has been investigated in detail between T=20 and 300 K at various injection current levels for a set of two blue InGaN/GaN multiple-quantum-well MQW light-emitting diodes LEDs with and without an additional n-doped In0.18Ga0.82N electron reservoir layer ERL . The radiative recombination efficiency of the main blue emiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009